RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

FIRST YEAR B.A./B.SC. FIRST SEMESTER (July – December) 2014 Mid-Semester Examination, September 2014

Date : 15/09/2014

PHYSICS (Honours)

Paper : I

Time : 11 am – 1 pm

Full Marks : 50

[6]

[Use a separate answer book for each group]

[Answer *five questions* taking at least <u>one</u> from each group]

<u>Group – A</u>

1.	a)	What do you mean by singular matrix.	[1]
	b)	Show that A is singular matrix if and only if it has zero eigenvalue.	[5]
	c)	Prove that $Tr(AB) = Tr(BA)$.	[4]
2.	a)	Consider the following transformation in three dimensions.	
		$x' = x \cos \theta + y \sin \theta, y' = -x \sin \theta + y \cos \theta, z' = z$	
		i) Write down the transformation matrix $A(\theta)$.	[1]
		ii) Show that $A(\theta_1)A(\theta_2) = A(\theta_1 + \theta_2)$.	[3]
		iii) Show that $A(\theta)$ is orthogonal matrix.	[2]
	b)	Find the eigen value and eigenvector of the matrix $\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$.	٢٨٦
			[4]

<u>Group – B</u>

- 3. a) Write down the condition of linear independence of a set of vectors in n-dimensions. Hence test if the three vectors $\overline{A} = 3\overline{i} 2\overline{j} + 4\overline{k}$, $\overline{B} = \overline{i} + 3\overline{j} + \overline{k}$ and $\overline{c} = 5\overline{i} + 6\overline{k}$ are linearly independent in three dimensions. [5]
 - b) Construct a set of three orthonormal vectors from the following three vectors $\overline{A} = 2\overline{i} 3\overline{j} + 4\overline{k}$, $\overline{B} = \overline{i} + \overline{j} + \overline{k}$ and $\overline{C} = 5\overline{i} - 6\overline{j} + 2\overline{k}$ by Gram-Schmidt orthgonalisation method. [5]
- 4. a) If $\phi = 5x^2 + 7xy + 8y^2z$, calculate the directional derivative at the point (1,1,1) along the direction $3\overline{i} + 2\overline{j} + \overline{k}$. Along which direction is this maximum? [4]
 - b) Test if the following vectors are conservative.

i)
$$\vec{F} = \vec{i}yz + \vec{j}zx + \vec{k}xy$$

ii) $\vec{F} = \vec{i}xy + \vec{j}yz + \vec{k}zx$

<u>Group – C</u>

- a) Define an inertial frame of reference. A space-time event is observed from two inertial frames S and S'. If S' is in uniform translational motion relative to S, obtain the transformation equations between the space-time coordinates of the event in S and S'. (Galilean transformations) [3]
 - b) A particle moves n a trajectory such that at time t, its polar coordinates are $r = \frac{bt}{\tau^2} (2\tau - t), \theta = \frac{t}{\tau} (0 \le t \le 2\tau)$

where b and τ are positive constants. Find the velocity vector of the particle at time t. [3]

- c) Derive the work-energy theorem for a particle of constant mass moving under a force field F. Show that if \vec{F} is conservative, a potential energy function V can be defined such that the total mechanical energy is conserved. [4]
- A particle of mass m is projected vertically upward with an initial velocity u_0 . A resistive force of 6. a) magnitude $R = mku^2$ (k > 0.const) acts on the particle
 - Set up the equation of motion during ascent, in vector form. i)
 - ii) Use (i) to find the height of rise when the particle has velocity v
 - iii) Hence, find the maximum height reached.
 - i) Set up the differential equation of motion of a body whose mass is changing during motion, b) and interpret it physically.
 - ii) Use (i) to obtain the equation of motion of a rocket.

Group – D

- State Fermat's principle. Show that if a point source is placed at one of the focii of an ellipsoidal 7. a) mirror, the reflected rays must meet at other focus. [1+2]
 - b) A light ray is refracted at a curved surface of radius of curvature R. The refractive index of the medium on the incident side is n_1 and that on the other side is n_2 . Show by Fermat's principle that n n $n_{\star} - n_{\star}$

$$\frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R}$$
 where u and v are object and image distances respectively. [4]

- c) Light takes 0.02 see to move over the distance between two points A, B in vaccum. The space is next filled with a liquid of r, i, 1.33. Calculate the time taken by light to travel between the same two points now. What is the principle of reversibility of light? [2+1]
- a) Show that the distance between first principal point and nodal point is equal to distance between 8. second principal point and nodal point. [3]
 - Two convex lenses of focal lengths 2cm and 6 cm are placed 4cm apart. Find the cardinal points of b) the system by matrix method. Show the points in a diagram. [4]
 - Show that the plane surface of a plano convex or plano concave lens does not contribute to the c) system matrix. What are aplanatic points? [2+1]

 $-\times$ —

[1+3+1]

[3+2]